SEM Basics

Mats Eriksson Spectral Solutions

Agenda

- Why SEM ?
- How does it work ?
- Sampling
- Electron sources and optics
- Electron and sample interaction
- Contrast mechanisms
- Interaction volume
- Imaging problems
- Astigmatism
- Variable pressure
- X-ray microanalysis

How the SEM works

- A finely focused beam of electrons is moved across the specimen one point at a time
- These stimulate electron emission which travels to a detector where they are collected and amplified
- The image is assembled like a mosaic - from the million or so pixels sequentially examined by the beam and presented on a computer screen

Macroscale to meso-scale..

Packaged microchip ready to ship – Field of View 5mm S3400

Imaging in context - low and high magnification for problem solving and flexibility of imaging mode

Ordered array of Carbon NanoRods on Si Field of view 1 mm

S4700

....To true nanoscale

SMART FFT analysis

Better depth of focus

Better depth of focus

Backscattered electron image (× 5,000 magnification)

The cross-sectional structure of the fiber was observed with a backscattered electron detector. This permits conformation of how the white particles are dispersed in the fiber.

X-ray spectrum of area enclosed in rectangle above

C TX-ray mapping image of C and Ti

Possibility for chemical analysis

		Conductive both-side tape	Conductive paste		Spenne -		
Name	Specimen stub	Double sided Carbon Tape	Conducting Graphite Paint	Tweezers	Wafer Tweezers	Blower	Diamond Scribing Pen

Magnetron sputtering device

Coating of sample having uneven surface

(1) Purposes of coating

- To make the sample surface conductive (prevention of charge-up)
- To increase the production rate of secondary electrons (increase image information)
- To prevent damage to sample

(1) Purposes of BIB (Broad Ion Beam) milling:

- To make the sample surface flat for EDX and EBSD analysis
- To eliminate oxid films or contamination, to enhance crystal orientation contrast
- To prepare "stressfree" a proper cross section of complex compound materials

Coated paper for colour printer

Electron beam formation

and before a walked for match allow a state that to a

Electron beam formation

How can we obtain an even finer electron beam ?

Electron Optics

Tungsten (W) thermionic filament.

- pre-centered, self adjusting (ABS).

Auto Beam Setting (ABS).

 automatical optimization of filament saturation and beam axis.

Apertures integrated in removable Liner Tube (HITACHI patent)

- all fixed apertures can be accessed by the user for easy exchange

Quad Bias

- strong emission current also at low accelerating voltages

Objective aperture alignment

- electronical optimization of beam (AAA).

Objective lens.

- optimized for high resolution even at low beam energies.
- large field-of-view, also unlimited in VP.

Source Comparison

	W	LaB6	Schottky FE	Cold FE
Beam diameter	1 – 2 μm	1 – 2 μm	10 – 25 nm	3 - 5 nm
Temperature	2300° C	1500° C	1500° C	Room temp
Brightness	1	10	500	1000
Energy spread, ΔE	2.0 eV	1.5 eV	0.5 eV	0.2 eV
Stability,%/h	0.1 %	0.2 %	0.2 %	5 %
Probecurrent	50 nA -1 μA	50 nA -1 μA	>100 nA	20 nA
Life time	1 month	6 months	18 months	5 years
Gun vacuum	10 ⁻⁵ Torr	10 ⁻⁷ Torr	10 ⁻⁹ Torr	10 ⁻¹¹ Torr

Electron Source: Tungsten Filament

Tungsten filaments, operating life about 100 hours.

Cathods are delivered pre-centered, no fine-mechanical adjustment work required

Re-adjustement of optics after filament exchange (filament saturation, beam axis) is automated a simple mouse-click is enough. (ABS-function)

Setur
aetup
Optics Image Record Op.Cond
ELECTRON BEAM
Vacc
15.0 💙 🗘 kV 🛛 ON
Emission Current
Filament 87
AFS CLow Mid O High
Gun Bias
·
0 100
ABS Auto Gun Bias
Probe Current 50.0 V
· · · · · · · · · · · · · · · · · · ·
0 100

Quad-Bias: More Probe Current also at low Beam Energies

Quad Bias circuitry allows high probe currents even at low accelerating voltages.

Advantages:

Superior imaging quality (signal-to-noise ratio, image contrast) for routine work at low beam energies

EDX analysis of thin layers at low beam energies is enabled.

Signals in the SEM

Emitted electrons

Emitted electrons

- When a sample is hit by an electron beam a variety of types of electron emission are available
 - electron emission are vailable
 Secondary electrons (energies 0 50eV)
 - Backscattered electrons (50eV to beam energy)
 - Elastically scattered electrons (i.e. those at the beam energy)

Energy spectrum from an InP wafer at 1.0keV incident beam energy

SE Contrast mechanisms

SE Contrast mechanisms

- The detector position therefore affects the image appearance
- The lower (ET) detector views the sample from one side and so the face looking away from the detector is shadowed
- Is this a pit or is it a pyramid?

SE Contrast mechanisms

- The upper (in-lens) detector views the sample from above
- The SE collection is now symmetrical and so all faces of the indent are equally visible.
- They are brighter than the flat surface because of topographic contrast.

Backscattered electrons

- The Backscattered Electron yield is
 η =N(BS) /N (incident)
- η increases with Z and incident angle
- η does not depend much on energy

Experimental BS yields

Interaction volume

- Images are formed
 because of beam interaction ¹/₂
 with the sample
- This happens in a volume, not in a point
- The size of this volume varies with beam energy...

SE & BSE at 25 kV

SE

SE & BSE at 5 kV

SE

BS E

Fig. 6 Composition of YAG Detector a) and Semiconductor Detector b)

Available image signals

SE

		is c	Jord	F
	12	Co.		
71.	1.	E F		
1	6.	L	1	pa-
	10			the second
10.0kV x1.00k BSECOMP				50.0um

COMPO

BSE

		ABC , Lir	ık
COMP	торо	3D	
SE Cala			
1 O	0 0	• 4	
Analysis	- Std	→ H.R.	

BSE 3D

Material Contrast and More: High Sensitivity 4+1 BSE Detector

BSE TOPO

BSE **3D**

BSE COMPO
Imaging problems

Charge up

Examples of Charge-up Phenomenon

Charge-up occurs during observation of non-conductive samples, and may be conspicuous especially when scan speed or magnification is changed.

Charge up

Countermeasures for the charge-up phenomenon.

- 1. Reduce the accelerating voltage.
- 2. Reduce the sample irradiating current.
- 3. Apply a metal coating.
- 4. Integrate the image (form an image by superimposing images obtained at rapid scan)
- 5. Observe images in low vacuum mode
- 6. Utilize a low-acceleration BSE signal (eliminate SE signal by means of signal varying mechanism)

Contamination

Example of Sample Contamination Hitachi High-Technologies Europe GmbH

Contamination

Countermeasures against contamination

The following steps are required in order to reduce the contamination:

- Reduction of residual gas molecules in specimen chamber (improvement of vacuum level)
- Reduction of gas molecules derived from sample

Concrete measures to achieve the above reductions are as follows.

- 1. Use a minimum amount of conductive paste or tape when mounting the sample in the instrument.
- 2. Thoroughly dry the conductive paste with a dryer or the like prior to inserting sample into the instrument for observation.
- 3. Heat and degas the sample in a vacuum device.
- 4. Carry out focusing as quickly as possible and avoid observing the same location for a long time especially at high magnification.
- 5. Observe samples while cooling the sample surroundings with a cold trap.

Beam damage

No beam damage

Damage due to beam irradiation

Countermeasures against contamination

- 1. Reduce the sample irradiating current
- 2. Lower the accelerating voltage
- 3. Apply (metal) coating to the sample (to imrove heat conductivity)
- 4. Observe the sample while cooling it

Outside disturbance

Countermeasures against vibration

- 1. Keep the instrument well away from vibration sources such as air-conditioner or pumps.
- 2. Do not let high-voltage cables from the column come in contact with the wall or other installation items Lower the accelerating voltage
- 3. Don't let the draft from an air-conditioner outlet contact the column directly.

Countermeasures against magnetic field

- 1. Keep the instrument well away from magnetic field sources such as transformer or large capacity power cables educe the sample irradiating current
- 2. Lower Shorten the working distance (see 1-7 or 4-5 in Chapter 6) and apply strong excitation to the condenser lens to counter the effect of a magnetic field.
- 3. Use a magnetic field cancelleing system

Other problems

Symptom	Possible causes
Sample moves	 Sample is not fixed in place adequately when sampling. Screw of specimen holder is not tightened adequately. Sample is inserted incompletely onto specimen stage. Compressor operated while the stage is locked.
Image fluctuates	 Irradiating current is low (change the excitation of condenser lens). Lower image is being observed at short WD in the case of semi in-lens SEM. WD is long in low vacuum SEM observation mode.
Focus cannot be obtained	 Inadequate optical axis alignment Objective aperture contaminated Recheck the instrument parameters.

Astigmatism

Before correction

Specimen:Trachea of rat

Astigmatism

After correction

Specimen:Trachea of rat

Variable Pressure

Pressure	Mean Free Path
10 ⁻³ Pa	40mm
13Pa	3mm
270Pa	0.1mm

SEM with Variable Chamber Pressure

- Conductive samples: Observation in high-vacuum
- Non-conductive samples: Observation in low-vacuum
 - No sample coating required.
 - If charging occurs, simply the chamber pressure is gradually increased until the charging disappears.

VACUUM MODE
○ VP-SEM
Current Vacuum <1 Pa
•
Setting Vacuum 80 Pa

- Investigation of humid or oily samples
 - An optional cool stage chills at ca. 60Pa chamber pressure the sample to –20°C, so that the evaporation of water is mostly suppressed

(balance point between solid and gasous phase)

Variable Pressure

Basalt - uncoated

Variable Pressure

X-ray mapping

77850cps, 38min., VP=50Pa, 60nA

X-ray mapping

77850cps, 38min., VP=50Pa, 60nA

SE Imaging at Low Chamber Vacuum

<u>Application:</u> Operation under low chamber vacuum. High surface detail resolution especially for light elements

Secondary electrons (SE) ionize gas molecules above the sample surface. Electric collection field accelerates SE -> further ionization, avalanche effect.

Recordable current per image pixel is proportional to the number of created SE.

Working distance WD < signal path length:

- high beam quality, less scattering at gas molecules
- large signal path length for efficient signal amplification

SE Imaging at Low Chamber Vacuum

Sample : Quartz (low atomic numbers)

Chamber pressure: 60Pa Vacc: 15kV

BSE image

SE Imaging at Low Chamber Vacuum

EDS theory on atomic level

- Characteristic line energies: origin in atomic structure, different for every element in the periodic table
- Line intensities: depend on ionisation probability, photon generation probability, sample composition = element concentrations

Quantification steps

Si- based detector (schematic)

A Si(Li) is built on a bulk silicon semiconductor crystal which has an inert volume, drifted with Li

Charge carriers produced by incoming X-rays are swept to the anode which is the entire surface of the crystal

To reduce noise the detector crystals and the separate first stage amplifier (FET) need to be cooled at -180° C

The SDD is a semiconductor device with a greatly reduced anode spot and drift rings The drift field guides the charge clouds to the designated anode spot

An integrated monolithically FET amplifies the signal

operating temperature (around -20°C) can easily be achieved by thermoelectric cooling (Peltier)

From LN2 cooled to SDD

- Why are Silicon Drift Detectors replacing LN₂ cooled Si(Li) systems ?
 - No liquid nitrogen
 - High countrates
 - Good resolution at high countrates
 - Small, less risk for vibration or acoustic disturbance
- Lately also :
 - Resolution down to 123 eV
 - Detection down to Be
 - Countrates over 1.000.000 possible

From LN2 cooled to SDD

Low capacitance

High speed

Resolution vs countrate

Resolution at low energies

Spectra comparison 123 eV / 150 eSpectral @ 60.000 cps output

Dual Detector QUANTAX

Hitachi SU-1500 With dual XFlash QUANTAX

What about 4 x 10 mm² chips ?

- 4th SDD generation, Tear Drop Layout
- 40 mm² active area (4x10 mm²)
- Energy resolution: ≤ 123 133 eV
- Detection from Boron (5) and up
- Max. input pulse rate: 3 000 000 cps
- Up to 50 times faster than 30 mm2 Si(Li)
- Vibration-free, maintenance-free

Practical consequence of speed

- XFlash[®] QUAD 5040
 Spectrometry mode

 138 eV resolution
 720,000 cps input
 40% dead time
 Acquisition time: <u>7 minutes</u>
- Si(Li) detector (30 mm²)
 138 eV resolution
 20,000 cps input
 60% dead time
 Acquisition time: <u>6.25 hours</u>
- Si(Li) takes 50 times longer

- Mineralogical sample
 - 15 keV
 - 600 x 450 pixels

Thank you !

Hitachi SU-70

Display Mode – Full Screen

Display Mode - Standard Spectral

Sample Navigation

Navigation possible on

- Low-mag SEM images
- Imported Grafics (jpg, bmp, tif)
- Optical CCD-Camera-Images

Point of interest can be centered by mouse click or dragging.

Mouse-Click at desired target location moves the point to the screen center.

Navigation on Sample

As each image is stored with the stage coordinate of its recording site, a return to a previous observation site is possible at any time.

Image Management

SEM Data Manager allows post-processing (measurement, labeling, filtering) and administration of recorded images.

